Transductively Learning from Positive Examples Only
نویسندگان
چکیده
This paper considers the task of learning a binary labeling of the vertices of a graph, given only a small set of positive examples and knowledge of the desired amount of positives. A learning machine is described maximizing the precision of the prediction, a combinatorial optimization problem which can be rephrased as a S-T mincut problem. For validation, we consider the movie recommendation dataset of MOVIELENS . For each user we have given a collection of (ratings of) movies which are liked well, and the task is to recommend a disjoint set of movies which are most probably of interest to the user.
منابع مشابه
The Importance of Neutral Examples for Learning Sentiment
Most research on learning to identify sentiment ignores “neutral” examples, learning only from examples of significant (positive or negative) polarity. We show that it is crucial to use neutral examples in learning polarity for a variety of reasons. Learning from negative and positive examples alone will not permit accurate classification of neutral examples. Moreover, the use of neutral traini...
متن کاملPredicate Invention and Learning from Positive Examples Only
Previous bias shift approaches to predicate invention are not applicable to learning from positive examples only, if a complete hypothesis can be found in the given language, as negative examples are required to determine whether new predicates should be invented or not. One approach to this problem is presented, MERLIN 2.0, which is a successor of a system in which predicate invention is guide...
متن کاملLearning to Classify Documents with Only a Small Positive Training Set
Many real-world classification applications fall into the class of positive and unlabeled (PU) learning problems. In many such applications, not only could the negative training examples be missing, the number of positive examples available for learning may also be fairly limited due to the impracticality of hand-labeling a large number of training examples. Current PU learning techniques have ...
متن کاملLearning from Positive and Unlabeled Examples
In many machine learning settings, labeled examples are difficult to collect while unlabeled data are abundant. Also, for some binary classification problems, positive examples which are elements of the target concept are available. Can these additional data be used to improve accuracy of supervised learning algorithms? We investigate in this paper the design of learning algorithms from positiv...
متن کاملLearning Schemas for Unordered XML
We consider unordered XML, where the relative order among siblings is ignored, and we investigate the problem of learning schemas from examples given by the user. We focus on the schema formalisms proposed in [10]: disjunctive multiplicity schemas (DMS) and its restriction, disjunction-free multiplicity schemas (MS). A learning algorithm takes as input a set of XML documents which must satisfy ...
متن کامل